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1. INTRODUCTION

Our purpose here is to study local approximation properties of projections
onto spline spaces. Given a sequence of spline spaces {SN} of fixed degree
k - 1 and a sequence of projections {PN}, PN: qo, 1] -'>- SN, such that
II PNf - fll", -'>- 0 for allfE qo, 1], we shall say that {PN} approximates well
locally or has good local approximation properties if for any 0 :(; a < ex <
f3 < b :(; 1 there exist constants K1 and K 2 and an integer No such that for all
fE e[O, 1],

II PNf - filL [~s] :(; K1{ inf Ilf - s IlL [a b] + K2(2fN)" inf Ilf - silL [0 II}
OCI ' sESN 00 • SESN 00 •

(1.1)

for N ~ No . This problem has been studied in the cases of quadratic spline
interpolation at the midpoints of mesh intervals and cubic spline interpolation
at mesh points; cf. [5, 9, 10]. In the L 2-norm for uniform partitions, this
problem has been studied for the least-squares projection by Nitsche and
Schatz [13]. For the least-squares projection in the uniform norm, a result
of the form (1.1) is implicit in the paper of Douglas, Dupont, and Wahlbin [8]
for quasi-uniform partitions. Our approach has been inspired by this latter
paper; in particular, by the observation of [8] that if a sequence of positive
numbers {an}n>l satisfies L;>n a; :(; M an for some constant M and all n,
then aJ :(; Kr;aI for some K > 0 and 0 < r < 1. The main result here is that
if the PN's are locally determined (cf. (3.1)) and if they satisfy some natural
uniformity condition (cf. (3.7)), then (1.1) holds (Theorem 3.6). Most, if not
all, of the widely studied spline projections satisfy our conditions.

In Section 2, we show that "most" uniformly bounded sequences of
projections do not approximate well locally. In Section 3 we give sufficient
conditions for (1.1) to hold. In Section 4, we give a few applications and
derive some known results. We also find a class of spline projections bounded
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LOCAL PROPERTIES OF SPLINES 177

on L q for some 1 ~ q < 00 whose LcD norms are of the same magnitude as
their Lq norms. This enables us to recover the result of [8].

For a partition LI: °= X o ~ Xl ~ ... ~ XN+!:-l = 1, with Xi < Xi+!:

for some fixed integer k ~ 2, we define the spline space S(k, Ll) to be the
linear span of the normalized B-splines {Bi}f~o\ where

Blx) = g(Xi+l , ... , X,+!: ; x) - g(Xi , ... , Xi+k-l ; x)

and g(s; t) = (s - t)~-\ cr. [4]. As is well known, there is a constant D k > 0
such that for any such LI and for any scalars {ai}

(1.2)

Here, il . Ii", is the Lee-norm on [0, 1]. We define Lf = maXi {Xi+k - Xi}' For
:::onvenience we shall often write S instead of S(k; LI). It will be understood
that all partitions are of the above form and that, unless stated otherwise,
k is a fixed but arbitrary integer greater than one.

The dual space of qo, 1] will be denoted by C*. IfIE: qQ, 1] and AE: C*,
the value of A at I will be denoted by OJ) or, sometimes, by A(f). For
AE: C* and A a subset of [0, 1] we shall write carr AC A if (A, f) = 0 for allf
which vanish on A. The smallest such set A is called the carrier of /... The
support of a function g E qo, 1] is supp g = {x: g(x) *- O}. Given linear
functionals {epi}~O\ linearly independent over S, the projection determined by
{epi} is P where PI = s if and only if <epi,f - s) = 0 Vi. Given {'\i}~l C C'"
and {g;}~l C qo, IJ, the notation T = LA; ® g, means that Tis determined
by the rule TI = L A;(f) gi VIE C[O, 1]; T is a projection if and only if
<'\; ,gj) = Oil' The adjoint of Tis T* = L g, ® '\ and 11 TI = II T* il·

2. A NEGATIVE RESULT

Most of the known projection schemes onto spline spaces are known to
enjoy local convergence properties. In the case of least-squares projections
onto spline spaces satisfying a global mesh restriction, this is an immediate
consequence of the proof given in [8]. In the case of quadratic spline inter
polation, it follows from a matrix theoretic argument; cf. [10]. For cubic
spline interpolation, a local convergence theorem can be found in [5J;
in addition, a matrix theoretic argument can be found in [9]. The approxi
mation methods investigated in [11] automatically have good local approxi
mation properties. On the other hand, the methods studied in [7] and [12]
do not approximate well locally (but the associated projections were not
uniformly bounded). It is, therefore, reasonable to ask: for what sequences of
projections {PN} onto spline spaces {SN} (PN: qo, 1] -+ SN = S(Ll N) and
limN~roLfn = 0) does SUPN II PN II < 00 imply that the PN's approximate
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well locally ? We shall presently show that not all such sequences of
projections have this nice property. In the next section we shall give some
sufficient conditions for {PN } to approximate well locally.

Let LIN be the partition of [0, 1] consisting of the points iJN, °:"( i ~ N,
and let SN = S(LlN ). Define the Banach space X == {{TN}: TN: qo, 1] -+ SN'
TN bounded, linear, and SUPN II TN II < oo} with II{TN}llx == SUPN II TN II and
the obvious algebraic operations. Let f!l h X consist of all {TN} such that
TN: qo, 1] -+ SN is onto and TN2 = TN VN.

PROPOSITION 2.1. Let {PN} E f!l and E > 0. Then, there is anfE qo, 1] n
C"'[O,!] and an {RN} E f!l such that !I{PN} - {RN}llx :"( E and limN~'" N .
II RNf - fIIL",[O,1/4] > 0.

Proof Let PN = Li AiN ® BiN where {BiN} is the normalized B-spline
basis for SN; we may assume that VfE C[O, 1] n C"'[O, i), limN~'" N·
II PNf - fIIL",[O,1I4] = 0. Let

lex
f(x) = Ig(~),

0:"( x ~!,

! ~ x ~ 1,
(2.1)

where g(!) = e1j2 and g is continuous on [!, 1] but has a derivative nowhere
on [!, 1]. Since inf{11 g - s IIL",[lI2.1]: s E C[!, 1] n SN} ?: C/N for some
C > °independent of N, there is a bounded linear functional ftN on C[O, 1]
such that ftN(S) = °VSESN , II ftN11 = 1, ftN(g)?: C/N, and ftN(h) = °if
hE C[O, 1] and hex) = °Vx E [t, 1]. Let QN == ELi ftN ® BiN and RN 
PN + QN' Now, for x E [0, tJ, we have

N· I RNf(x) - f(x) I ?: N· I QNf(x) I - N I PNf(x) - f(x) I

> E • C - N I PNf(x) - f(x)l.
Q.E.D.

The following result further demonstrates the scarcity of sequences of
projections with good local approximation properties.

PROPOSITION 2.2. Letfbe as in (2.1), let 0.:::;; z .:::;; t, and let E > 0. Then
A == {{PN} E f!l: limN~'" Nl+< IPNfez) - f(z)1 is finite} is of the first category
in f!l.

Proof A h U:~l AM where AM = {{PN}: I PNfez) - f(z) I :"( MJNl+<}
Each AM is clearly closed and the construction used in the previous lemma
can be used to show that no AM has an interior in f!l; we leave the details
to the reader.

While the above results show that "most" sequences of projections do not
have nice local approximation properties, it is the case that most (if not all)
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of the widely used projection schemes do approximate wen locally. As we
show in the next section, this is essentially a consequence of the uniform
boundedness of the sequence of projections.

3. MAIN RESULTS

Let P = L'\' @ B, be a projection determined by (fL,} where

carr po, C supp B, Vi and l: h'l :(; 1 Vi. (3.1 )

It follows that '\; = L; a"fL; for some constants a,j' There is a constant
D > 0 independent of LI such that for any f EO C[O, 1] and any i and I (l ~

II! - g IlL [x x +'] :(; D infil! - s
cc P t sES

for some g EO S; see [2] or [11] for details. Since P is a projection, Pf - f =
P(f - g) + (g - f). Therefore, to estimate Pf - f. it suffices to estimate
P(f - g). Let x E [Xl' X lH]. Then, for any m ?c 0,

I P(f - g)(X) I = II I I ai;fJ-i f - g) BJx) I
I,-li<k ) I

:(; (2k - 1) .max l I I a'l I ' fL;(f - g)1
[,-I[<2k [J-i[(nI

+ I I a,; II fLJ(f - g)I;.
IJ-II>m

By (3.1) we obtain

!I P(f - g)IIL",[x"£Z+k] :(; (4k - l){K Ilf - g k,,[X'-k-m-rl' "l+'k+m1

+ ilf - g R(l, m)}.

In this case

and

R(l, m) = .m~x I I aij I·
1'-/ <2k !;-i[>m

(3.2)

The following result is known, but since it motivates much of what will
follow, we include a proof.
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PROPOSITION 3.1. Let P = L Ai ® Bi be the projection determined by {fLi}
where the fL/S satisfy (3.1) and Ai = L ai;fL;. Assume there are positive
constants C1 , C2 , and r with 0 < r < 1 such that for all i

I aiJ I ~ C1r1i-J1 I I ai; [ ~ C1r1i-JIC2 •

IJ-il<k
(3.3)

Let 0 ~ a < iX < f3 < b ~ 1 and let f E C[O, 1]. Then, there exist constants
K1 and K2 independent offand LI such that for Lf sufficiently small

Proof Let x E [iX, f3] and let i and m be such that a ~ Xi-m ~ iX < Xi ~
X ~ Xi+l < f3 ~ Xi+m+k ~ b. By (3.2) and (3.3) it suffices to show that for Lf
sufficiently small rml(l - r) ~ (Lf)k. Now, rml(l - r) ~ hk if and only if
m + 10gllr(l - r) ;?; k logllrh-1. Let b = min{iX - a, b - f3}; then,

1 2m+k .____2m+k
if ~ ~ \,' .

LJ Xi+m+k - Xi-m 0

The desired result now follows easily.
It can now be seen that if each element of a sequence of projections {PN },

PN : C[O, 1] -+ S(L1 N ), satisfies (3.1) and if there exist constants C1 , C2 , and r
such that (3.3) is satisfied for all PN , then we will have a local convergence
theorem for this sequence.

A few observations on projections onto spline spaces are in order. First
of all, if P = L Ai ® Bi , then (cf. (1.2»

Di/ ml;lx II Ai II ~ [I P II ~ ml;lx II \-11.
l l

If 4> = L aiA%, then, obviously, II 4> II ~ max II A% II L [a; I. A converse
inequality also holds:

I I a; I = (I aJA; , I sgn aiB) ~ II 4> II.

Finally, the norm of an element 4> = L aiAi is essentially determined by its
action on S. We make this precise in the following lemma.

LEMMA 3.2. Let P = L Ai ® Bi be a projection onto S. Then, with
K = Dk maXi 11.-\ II, we have for 4> = L aiAi

K-111 4> [I ~ I I(c/>, B%>I ~ II c/> II· (3.5)

Proof Let c/> = L aiAi and let {Ci} be arbitrary scalars. Then,

II Ci(c/>, Bi>' ~ m~x I c; I~ (c/>, Bi>1 ~ Dk ~ I(c/>, Bi>111 I c;B; IL .
% %



LOCAL PROPERTIES OF SPLINES 181

where K is as in (3.5).

Consequently, by a theorem of Helly (cf. [1, p. 43]) there is a l/J E C* such that

<l/J - if;, Bi) = 0 Vi and Ill/J II :s::. Die Li l<if;, Bi)l. Now, II if; II = II Pl/J Ii <
II Pili! l/J II :s::. maxi II Ai II Die L I<if;, Bj)l. The other inequality is clear.

The above result has a converse. Namely, if (3.5) holds for some K, then
II P II :s::. K. To see this, note that for l/J E C*, II P*l/J Ii = II L' <l/J, B.)Ai i! :s::.
KLJ [(Li <l/J, B)Ai , B)I = KL, I<l/J, B,)i = K<l/J, L e,B) :s::. KIIl/J I: for
appropriate ej E {-I, I}.

COROLLARY 3.5. Suppose P = L Ai ® Bi is a projection. Let {if;.} be a
basis for span{A;} satisfying

T-l L I a, I :s::.11 L a,if;.!1 :s::. L I a, I (3.6)

for all {ai}' Then,for if; = L aiCP, ,

(TK)-l L I ai I :s::. L l<cp, B.)i,

THEOREM 3.6. Let P = L Ai ® Bi be the projection onto S determined by
the functionals {cp,}. Assume that the cp/s satisfy (3.1) and (3.6). Further, assume
that there is a constant A > 0 such thatfor all i,/or all r ~ 1, andfor all {a,}

(3.7)

Then, there exist constants K and r, 0 < r < 1, depending on only T and JI P q
such that

t+k-l

I aiJ I :s::. Kr lHI I I ai!'
l~,

(3.8)

Remark. From (3.5) and (3.6) it follows that (3.7) is equivalent to the
assumption that the projections onto span{Bi '00', Bi+r} determined by
{CPi '00" CPi~r} are uniformly bounded.

Proof Fix i. We prove the theorem for j > i. The case J < i follows by
symmetry. Let Jo == i and Jm = Jm-l + k = i + mk. Choose Ejm E{ 1, n
so that

.L ! aij I :s::. A (L adCPJ, I ErBJ).
r;;:'Jm J';;3;J m J~}m

Note that

and that
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im-l

<. ~ aijepj + ,L aijepJ' L ErBj) = O.
j=Jm-l J");Jm J;;:'Jm

By (3.7) and (3.6)
im- 1

I I a,., I < A I I aij I·
J>jm j=irn- t

Now, with Sm = L~:~~_l 1aij I, we have Lm>l Sm = Lj>jo Iau I and
Li>m Si < ASm for m ?: 0. Therefore, by a lemma of Douglas, Dupont, and
Wahlbin [8], it follows that Sm+! < (AI(l + A))m-l ASI • The desired result
now follows easily.

. i+k-l b b " 1The quantIty Sl = Lj=l Iaij I can e ounded as 101 ows:

i~fl I ao I < I I ail I < Til I aijepj Ii = Til ¢i II < TDk II P II·
J~' J

COROLLARY 3.7. Let {LIN} be a sequence ofpartitions with limN_>ro 3 N = 0.
Let {PN}, PN: C[O, 1] ---'>- S(Ll N) - SN' be a sequence of projections. Assume
that there is a Ao > °such that each PNsatisfies the hypothesis of Theorem 3.6
with Ao in (3.7). Let °< a < ex < f3 < b < 1. Then, there exists an integer
No and constants Kl and K2 such that for every f E C[O, 1]

II PNf - filL [n: /3] < Kl { inf Ilf - s ilL [a b] + K2(3Ny" inf Ilf - s llro}
00 • SESN co • SESN

for N?: No.

Remarks. 1. Condition (3.1) may be relaxed to: There exists an r ?: °
such that for all i, carr fLi k U~:;-r supp BJ and II fLi II < 1.

2. Theorem 3.6 can easily be extended to more general situations; all
that is needed is that the spaces used for approximation have bases with
properties similar to those of the normalized B-spline bases.

3. The condition that L Iai I < Til a,epi II for all {ai} for some r> °
(3.5), can be replaced by: There is a q < r:J? and a r > °such that for all {a i },

{L I ai IqF/q < Til L aiepi II. However, in many cases of interest, e.g., inter
polation, the ep/s have disjoint carriers so that (3.5) holds trivially.

4. ApPLICATIONS

THEOREM 4.1. Let LI be given with Xi < x.+4 Vi and let P: C[O, 1] ---'>

S(4, LI) = S be defined by Pf = s ifand only iff(Ti) = S(T.), -0 < i < N - 1,
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where 7', = (X
'
+1 + X H2 + xi+3)/3. If °:(: a < rx < (3 < b :(: 1 and fE

qo, 1], then for Lf sufficiently small

II Dj(Pf - f)IIL",l~.B] :(: K{insf !If" -s" liL",[O,b] + C(Lf)4 insflif - S!i L",[O,11HL1)2-J.
SE sE

Proof It suffices to verify (3.7). But, de Boor [6] has shown that for
any sequence {Xi}' with X, < XiH Vi, II P II :(: 27.

The local convergence theorems for the usual Type I cubic spline inter
polation found by Kammerer and Reddien [9] required that the partitions
be quasi-uniform. Later on, de Boor [5] showed that quasi-uniformity could
be relaxed to a local mesh ratio restriction. The next result shows that if we
restrict our attention to functions f E C2[O, I], then no mesh ratio restriction
is necessary.

THEOREM 4.2. Let Ll: °= X o < Xl < ... < X N = 1 and let P: C 2[O, 1]->
S(4, Ll) - S be defined by Pf = s ifand only if!(Xi) = S(Xi), 0 :(: i :(: N, and
rex,) = S'(Xi), i = 0, N. Let °:(: a < ex < (3 < b :(: 1. Then. for 0 :(:j :(: 2,
and Lf sufficiently small,

Ii DJ(Pj - f)liL",[~.B] :(: K{insf!if - s !lL",[a.b] + C(Lf)4 insf I, f - s I'L",lo.lll.
sE SE

Proof This follows immediately from the fact that the least-squares
projection L: qQ, 1] ->- S(2, Ll) is bounded independent of Ll (cf. [3]).

In a similar way one can prove a mesh ratio free local convergence theorem
for Type I quintic spline interpolation. In fact, in light of the results of [8],
one can prove (for quasi-uniform partitions) similar local convergence
theorems for Type I interpolation by any fixed odd-degree splines. It should
be noted that proofs of the above results were "boundary condition free"
and that, consequently, verification of (3.7) was trivial.

For our final application, we consider sequences of projections that are
bounded in some L 1' , 1 :(: p < 00. Let us first recall [4], that for 1 :(: p < 00

there is a constant Dk,p such that for all sequences {a,l

(4.1)

where Bi,1' = {k(xi+k - xi)}l/p Bi .

LEMMA 4.3. Let P = L Ai Q9 Bi,1' be a projection from L p onto S. Then,

(a) D/:/1' SUPI[flip~lU:: I<Ai ,j>!P}l/P :(: 11 PI! :(: SUPlif[lp~l{L l<Ai ,j)IP}l/P;

(b) for each AE span{.\,},

(II P II D",p)-l Ii AI!q < II I<A, Bi,vW('/ < kI/" I. ,\ I!q :
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(c) for each s E S,
\ ,liP

(II P II Dk,q)-lll slip ~ IL I<Ai ,s)IPj ~ k l /P II slip.

Here, (ljq) + (ljp) = 1.

Conversely, iffor some K > 0, K-l II AIlq ~ {:L 1<,1., Bi,p)lq}l/q hold for all
AE span{Ai}, then, II P II ~ Kkl /q.

Proof (a) follows from (4.1). The arguments used to prove (b) and (c)
are simply modifications of the proof of Lemma 3.2. The converse is also easy.

The proof of the following result is similar to that of Theorem 3.6 so we
omit it.

THEOREM 4.4. Let 1 ~ p < 00 and let P = :L Ai ® Bi,p be determined
by linear functionals {rPi} satisfying (i) rPi = ° a.e. on [0, 1]\(xi' xm),
(ii) II rP;(Iq ~ 1 Vi ((ljp) + Ijq = 1), and (iii):L Iaj Iq ~ y II 'L ajrPj II~for some
constant y > 0. Further assume that there is a constant r > 0 so that for
each i and for each r ~ k the projection onto span{Bi ,... , Bi+r} determined by
{rPi ,... , rPi+r} is bounded in norm by r. Then,

(a) if2 ~ p < 00 and Ai = 'L ai;rPj ,

for all i,

where K > 0 and 0 < r < 1 depend only on r;
(b) if 1 ~ p ~ 2 and Ci = 'L bijBj,p where <rPi' Cj) = Oij,

I bi ; I ~ Kr lHI l:~ I au IPr/
p

where K and r are as in (a).

for all i,

COROLLARY 4.5. Let P satisfy the hypotheses of Theorem 4.4. Assume .J
is such that max{xHk - x,}jmin{xi+k - Xi} < a. Then, when viewed as an
operator on qo, 1], the norm of P is bounded by (2aKyj(l - r)) Dk,p II P lip
where K, r, and yare as in Theorem 4.4.

Proof Assume 2 ~ p < 00. Then, P = L hiAi ® Bi , where hi =
{kjXi+k-x,F/P, and II P 1100 ~ maxi II hiAi III . But II Ai III < max; II rP; 111 L; I ai' I·
HOlder's inequality shows that II rP, III ~ (Xj+k - X;)l/p II rP; Ilq < (XJ+k - X;)l/p.
Thus,

lHk !l/q
II P 1100 < a m~.x I I aij I < 2aKI r; m~x L. I aij Iq

) } J=t

Now, apply Lemma 4.3(b).
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It is clear that a projection, P = LA, ® Bi,p, which is bounded on L p
is also bounded on Len ; it is also clear that the Len norm of P, in general,
depends on more than just the Lv-norm of P. The above result yields that,
with the hypotheses of Theorem 4.4 and with a global mesh ratio restriction,
the Lao norm of P is of the same magnitude as the Lv norm. In some cases
the mesh restriction might not be necessary. Finally, let us note that with
p = 2 and 4>i = B i ,2 , we can recover the result of [8], that the least-squares
projection can be bounded in terms of a global mesh ratio.
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