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1. INTRODUCTION

Our purpose here is to study local approximation properties of projections
onto spline spaces. Given a sequence of spline spaces {Sy} of fixed degree
k — 1 and a sequence of projections {Py}, Py: C[0, 1] — Sy, such that
| Pxf — flle — 0 for all fe C[0, 1], we shall say that {Py} approximates well
locally or has good local approximation properties if for any 0 << g < o <
B << b < 1 there exist constants K; and K, and an integer N, such that for all
feClo, 1],

Il PNf_f”Lw[:x,B] < Kl{si%f\, Hf = sl tas1 T Kz(ZN)k slélsﬁ, lf—s ”Lw[ﬂ,l]}
‘ (1.1

for N = N, . This problem has been studied in the cases of quadratic spline
interpolation at the midpoints of mesh intervals and cubic spline interpolation
at mesh points; cf. [5,9, 10]. In the Ly,-norm for uniform partitions, this
problem has been studied for the least-squares projection by Nitsche and
Schatz [13]. For the least-squares projection in the uniform norm, a result
of the form (1.1) is implicit in the paper of Douglas, Dupont, and Wahlbin [8]
for quasi-uniform partitions. Our approach has been inspired by this latter
paper; in particular, by the observation of [8] that if a sequence of positive
numbers {a,},>, satisfies >, @; < M a, for some constant M and all n,
then @, < Kria, for some K > 0and 0 < r << 1. The main result here is that
if the P,’s are locally determined (cf. (3.1)) and if they satisfy some natural
uniformity condition (cf. (3.7)), then (1.1) holds (Theorem 3.6). Most, if not
all, of the widely studied spline projections satisfy our conditions.

In Section 2, we show that “most” uniformly bounded sequences of
projections do not approximate well locally. In Section 3 we give sufficient
conditions for (1.1) to hold. In Section 4, we give a few applications and
derive some known results. We also find a class of spline projections bounded
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LOCAL PROPERTIES OF SPLINES i

on L, for some 1 < ¢ < oo whose L, norms are of the same magnitude as
their L, norms. This enables us to recover the result of [8].

For a partition 4:0 = x; < x; < - < Xypq = L, With x; <xpp
for some fixed integer k > 2, we define the spline space S(k, 4) to be the
linear span of the normalized B-splines {B,}1 ', where

Bi(x) = g(Xiqq o> Xoiro 3 X) — &Ky yvry Xigpoz 5 X)

and g(s; 1) = (s — 1)%7; cf. [4]. As is well known, there is a constant D, > 0
such that for any such 4 and for any scalars {¢;}

Di'max|a, | < ll Y a;B;

< max | 4, |. (1.2)

0

Here, { - |\ is the L -norm on [0, 1]. We define 4 = max; {x,,, — x;}. For
convenience we shall often write S instead of S(k; 4). It will be understood
that all partitions are of the above form and that, unless stated otherwise,
k is a fixed but arbitrary integer greater than one.

The dual space of C[0, 11 will be denoted by C*. If f= C[0, 1 and A e C*,
the value of A at f will be denoted by <A, f)> or, sometimes, by A(f). For
Ae C*and A4 a subset of [0, 1] we shall write carr AC 4 if (A, > = Cforallf
which vanish on 4. The smallest such set 4 is called the carrier of A. The
support of a function ge C[0, 1] is supp g = {x: g(x) = 0}. Given linear
functionals {$,;}1 5}, linearly independent over S, the projection determined by
{¢;} is P where Pf = s if and only if (¢, , f — s> = 0 Vi. Given {A;}}1, C C*
and { g2, C C[0, 1], the notation 7 = Y A; ) g, means that 7'is determined
by the rule Tf = 3 A f) g;Vfe Cl0, 11; T is a projection if and only if
.8 =206; . .Theadjoint of Tis T* =% g, @ N and || T| = || T#{.

2. A NEGATIVE RESULT

Most of the known projection schemes onto spline spaces are known to
enjoy local convergence properties. In the case of least-squares projections
onto spline spaces satisfying a global mesh restriction, this is an immediate
consequence of the proof given in [8]. In the case of quadratic spline inter-
polation, it follows from a matrix theoretic argument; cf. [10]. For cubic
spline interpolation, a local convergence theorem can be found in [5];
in addition, a matrix theoretic argument can be found in {9i. The approxi-
mation methods investigated in [11] automatically have good local approxi-
mation properties. On the other hand, the methods studied in [7] and [12]
do not approximate well locally (but the associated projections were not
uniformly bounded). It is, therefore, reasonable to ask: for what sequences of
projections {Py} onto spline spaces {Sy} (Py: C[0, 1] — Sy = 5{4,,) and
limy.o 4, = 0) does supy| Pyl < oo imply that the Py’s approximate
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well locally? We shall presently show that not all such sequences of
projections have this nice property. In the next section we shall give some
sufficient conditions for {P,} to approximate well locally.

Let 4, be the partition of [0, 1] consisting of the points i/N, 0 < i < N,
and let Sy = S(4y). Define the Banach space X = {{Ty}: Ty: C[0, 1] — Sy,
Ty bounded, linear, and supy || Ty |l << oo} with [{Ty}x = supy || Ty || and
the obvious algebraic operations. Let & C X consist of all {7} such that
Ty: C[0, 1] — Sy is onto and T? = Ty VN.

ProPOSITION 2.1. Let {Py}e P and € > 0. Then, there is an f€ C[0, 1] N
C[0, §] and an {Ry}e P such that [{Py} — {Ry}lly < € and Timy.,, N -

| RyS — fllr o.1/a1 > O.

Proof. Let Py = 3; A~ ® BN where {B;¥} is the normalized B-spline
basis for Sy; we may assume that Vfe C[0,1]n C=[0, }), limy., N -
| Paf — flir foassy = 0. Let

e, 0
1
2

200, f @.n

fx) =
where g(3) = €'/? and g is continuous on [, 1] but has a derivative nowhere
on [4, 1] Since inf{l|g — sl [1/2.11:5€ C[3, 110 Sy} = CIN for some
C > 0 independent of N, there is a bounded linear functional u, on C[0, 1]
such that py(s) =0VseSy, luxll = 1, uy(g) = C/N, and py(h) = 0 if
heC[0,1] and A(x) = 0 Vxe [} 1] Let Qy = €3>, py ® B and Ry =
Py + Oy . Now, for x € [0, ], we have

N Ryf(x) = fG) = N | Quf )| — N | Pyf(x) — f(x)]

>eC—N|Pyf(x) —f(¥).
| QED.

The following result further demonstrates the scarcity of sequences of
projections with good local approximation properties.

ProrosiTioN 2.2. Letfbeasin(2.1),let0 <z < %, and let € > 0. Then
A = {{Py} € Z: limy.... N¥t< | Py f(2) — f(2)| is finite} is of the first category
in .

Proof. ACUsy_i Ay where Ay = {Pyx}:| Pyf(2) — f(2)] < M|N™)
Each A, is clearly closed and the construction used in the previous lemma
can be used to show that no A4,, has an interior in &; we leave the details
to the reader.

While the above results show that “most” sequences of projections do not
have nice local approximation properties, it is the case that most (if not all)
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of the widely used projection schemes do approximate well locally. As we
show in the next section, this is essentially a consequence of the uniform
boundedness of the sequence of projections.

3. MAIN REesSULTS

let P = 3 A, ® B, be a projection determined by {u,} where
carr p, Csupp B, Vi and hps'l < 1V (3.1)

It follows that A, = 3, a;;u; for some constants g,;. There is a constant
D > 0 independent of 4 such that for any fe C[0, 1Jand any iand [ {({ = k)

L — gl teya, g <D ijrexgi!f — Sl e, g,

for some g € §; see [2] or [11] for details. Since P is a projection, P/ — f =
P(f—g) + (g — ). Therefore, to estimate Pf — 7. it suffices to estimate
P(f— g). Let x € [x;, X1,4). Then, for any m > 0,

PU—9W =] Y Yam(f—g Bm!

I fo—l;<k

<@k 1) max | Y ia, | m(f— )

|i-i] <2k 'M—ikm
+ 3 lagllu( -9l

[3—i{>m

By (3.1) we obtain

1P = @i gleperesd < 3k — DK S — &l as 4 nn. cronim
+ il — glle RU, )} 3.2}

In this case

K= max 3 lal
[i—tlgm

and

R(I,m) = max > la;l

i1
Ji—i1<2k \i—i]>m

The following result is known, but since it motivates much of what will
follow, we include a proof.

640/19[2-6
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ProrosITION 3.1. Let P = Y A; ® B, be the projection determined by {u;}
where the p;’s satisfy (3.1) and A, =Y ayp; . Assume there are positive
constants C, , Cy, and r with O << r < 1 such that for all i

la;, | < Cyrli=il Z la; | < GG, (3.3)
|o~i|<E

Let 0 <a<a<B<b<1andletfeC0, 1. Then, there exist constants
K, and K, independent of f and A such that for A sufficiently small

[ Bf = fllrgteer < Kofinf 1 f — sl 000 + Ke(DF inf | f — slla). (3.4)

Proof. Let x€[a, f] and let i and m be such that a < x;_, < o < X; <
X < Xy < B < Xiymar < b. By (3.2) and (3.3) it suffices to show that for Y|
sufficiently small r™/(1 — r) < (4)*. Now, r™/(1 —r) < A* if and only if
m + logy, (1 — r) = klogy,ht. Let 8 = min{a — a, b — B}; then,
1 2m + k < 2m + k

— <L
~ ~
4 Xitmtr = Xi—m S

The desired result now follows easily.

It can now be seen that if each element of a sequence of projections {Py},
Py: C[0, 1] — S(d4y), satisfies (3.1) and if there exist constants C; , C, , and r
such that (3.3) is satisfied for all Py, then we will have a local convergence
theorem for this sequence.

A few observations on projections onto spline spaces are in order. First
of all, if P =Y A; ® B;, then (cf. (1.2))

Dt max | Al < | Pl < max || Al

If ¢ =3 a;A,, then, obviously, ||| <max|A|X]a;]. A converse
inequality also holds:

Y la;] = <Z ), Y sgn aiBz> <4l

Finally, the norm of an element ¢ = Y a,); is essentially determined by its
action on S. We make this precise in the following lemma.

LemMMA 3.2. Let P =3 A, ® B, be a projection onto S. Then, with
K = D, max,| A; |, we have for ¢ = a);

K¢l <Y Kb B <1 (3.5
Proof. Let ¢ = 3 a;A; and let {¢;} be arbitrary scalars. Then,
| S et BO| < maxie, | (4 Bo| < DT 1< BOI| LBy
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Consequently, by a theorem of Helly (cf. {1, p. 43]) there is a ¢y € C* such that
Gp— ¢ By =0 Vi and | ¢ < Dy Zi <, BI. Now, || ¢l =[Pl <
PP < maxg||A; || D 2 [<¢, Bi>|. The other inequality is clear.

The above result has a converse. Namely, if (3.5) holds for some K, then
|| Pl << K. To see this, note that for e C*, || P¥ | = |3, (&, BoA 1 <
K3, <5 G, Boh, BY| = KX, [, BY| = Kb, S ¢,B)y < K| for
appropriate e; € {—1, 1}.

COROLLARY 3.5. Suppose P =Y A\ &Q B; is a projection. Let {¢,} be a
basis for span{A;} satisfying
Iy lai < Yad
Jor all {a;}. Then, for ¢ =3 a;¢;,
(FK) Y 1a; | <) K, Bl where K is as in (3.5).

<) lal 3.6

0

THEOREM 3.6. Let P = 3 A, ® B, be the projection onio S determined by
the functionals {¢,}. Assume that the $;’s satisfy (3.1) and (3.6). Further, assume
that there is a constant A > 0 such that for all i, for all v > 1, and for all {a,)}

(X abi.5). 37
I=3

Then, there exist constants K and r, 0 < r < 1, depending on only I’ and || P
such that

T

i+
A1y el <Y
)=i =1

1 +k—-1
Lay | < Kri il Y gy, (3.8)
=2
Remark, From (3.5) and (3.6) it follows that (3.7) is equivalent to the
assumption that the projections onto span{B;,..., B;,} determined by
{b; 5oy 5., are uniformly bounded.

Proof. Fix i. We prove the theorem for j > i. The case j < 7 follows by
symmetry. Let j, =17 and j,, = j,._, + &k =i + mk. Choose ¢ e{—1, 1}

so that
Y lay;l <4 < Y @i, 3. fijf>-
Iz, iz 12im
Note that
<Z ain’} 2 2 ea'mBi> = <)‘z > Z €JmBJ'> =0
) 120 12l
and that

< > audis Y E,mB,-> = 0.

J<Sm—1 129
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Therefore,

<]mz bt 3 ash, 3 o "B) = 0.

[ I

By (3.7) and (3.6)
I

Z’CZ”] /1 Z ]aw]

120 Je=dpq

Now, with s, = Hm Jlal, we bave X8, = X145 and
Siom i < s, for m = 0. Therefore, by a lemma of Douglas, Dupont, and
Wahlbin [8], it follows that s,,,, < (A/(1 + A)y"* As, . The desired result
now follows easily.

The quantity s; = Yorv | a;; | can be bounded as follows:

i+k-1

Y, layl <Ylay! <T|Yauss

i=i

| = rig <o Pl

COROLLARY 3.7. Let{dy} be a sequence of partitions with limy_., 4 = 0.
Let {Py}, Py: C[0, 1] — S(dy) = Sy, be a sequence of projections. Assume
that there is a Ay > 0 such that each Py, satisfies the hypothesis of Theorem 3.6
with Ao in (3.7). Let 0 < a < a < B < b < 1. Then, there exists an integer
N, and constants K, and K, such that for every fe C[0, 1]

| Puf = fleghms < Kl ] mf If = $legtan + K(dp)* inf N — sllo}
for N = N,.

Remarks. 1. Condition (3 1) may be relaxed to: There exists an r > 0
such that for all 7, carr p; C Ui, supp B, and || p; || < 1.

2. Theorem 3.6 can easily be extended to more general situations; all
that is needed is that the spaces used for approximation have bases with
properties similar to those of the normalized B-spline bases.

3. The condition that ¥ | a; | < I'| a,¢, || for all {a;} for some I" > 0
(3.5), can be replaced by: Thereisa g < co and a I" > 0 such that for all {a},
T la; |9 < I'| Y a;¢; |l. However, in many cases of interest, e.g., inter-
polation, the ¢,’s have disjoint carriers so that (3.5) holds trivially.

4. APPLICATIONS

THEOREM 4.1. Let A be given with x; << x,.4 Vi and let P: C[0, 1] —
S, 4) = S be defined by Pf = sifandonly if f(v;) = s(z,), "0 <i < N —1,
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where 7, = (X, + Xppo +Xi0)/3. If 0 <a<a<B<b<1 and fe
C0, 11, then for 4 sufficiently small

DABS Vs iy < KEOE 17" i o -+ C 0E 1 — sl g} (2.

Proof. 1t suffices to verify (3.7). But, de Boor [6] has shown that for
any sequence {x,;}, with x, << x.., Vi, || P| < 27.

The local convergence theorems for the usual Type I cubic spline inter-
polation found by Kammerer and Reddien [9] required that the partitions
be quasi-uniform. Later on, de Boor [5] showed that guasi-uniformity could
be relaxed to a local mesh ratio restriction. The next result shows that if we
restrict our attention to functions f'e C?[0, 1], then no mesh ratio restriction
is necessary.

THEOREM 4.2. LetA:0 = xy < x; < *» < xy = 1 and let P: C*[0, 1] —
S(4, 4) = S be defined by Pf = s if and only if f(x;) = 3(x;), 0 < i < N, and
fi(x)=5(x),i =0, N. Let0 <a<oa<<B<b<1 Then for0 <j<2,
and 4 sufficiently small,

[ DUPf — Pl fasr < K{mf‘ S s e e + C(dy mﬂ f— S lirgfo.1ll-

Proof. This follows immediately from the fact that the least-squares
projection L: C[0, 1] — S(2, 4) is bounded independent of 4 (cf. [3]).

In a similar way one can prove a mesh ratio free local convergence theorem
for Type I quintic spline interpolation. In fact, in light of the results of [8],
one can prove (for quasi-uniform partitions) similar local convergence
theorems for Type 1 interpolation by any fixed odd-degree splines. It should
be noted that proofs of the above results were “boundary condition free”
and that, consequently, verification of (3.7) was trivial.

For our final application, we consider sequences of projections that are
bounded insome L, , | << p < oo. Let us first recall [4], thatfor 1 <p < w
there is a constant D, , such that for all sequences {a,}

1/p 1’1/
D’ 321aw' <”ZaBlpl \ 4.9

Z la, ;p
where Bi,p = {k/(xl+k - xi)}]'/p Bl .

Lemma 4.3. Let P =3 A, ® B, , be a projection from L, onto S. Then,

(@) Dyl supy ol 1, POIPIY? P < supyyy 2 KA, 1Y
(b)Y for each X e span{]},

1/¢
AP D)™ [ Al < [T 1A Bupdle] < K] Al

640(19/2-7
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(c) foreachsesS,
1/p
UPID) sl < T 10, ] < Rariis],.
Here, (1/q) + (1/p) = 1.

Conversely, if for some K > 0, K1 || A]l, < {3 KA, B; 0192 hold for all
A€ span{A;}, then, | Pl < KkU/e

Proof. (a) follows from (4.1). The arguments used to prove (b) and (c)
are simply modifications of the proof of Lemma 3.2. The converse is also easy.

The proof of the following result is similar to that of Theorem 3.6 so we
omit it.

THEOREM 4.4, Let 1 << p << oo and let P =3 A\, ® B;,, be determined
by linear functionals {¢;} satisfying (i) ¢; =0 ae. on [0, 1N\Cx;s, Xsp)s
@) billy < 1Vi((Afp) + llg = 1), and (ii) 3. | a; 17 < y | X a;¢; |3 for some
constant y > 0. Further assume that there is a constant I' > 0 so that for
each i and for each r = k the projection onto span{B; ..., B;,,} determined by
{¢; ey bsir} is bounded in norm by I'. Then,

(@) if2<p<coandd; =73 ayd;,
itk

Y lagle

i=i

/g

| @y | < Krlt41 for all 7,
7

where K > 0 and 0 < r < 1 depend only on I;
(b) if1<p<2andC; =3 b;B;, where{¢;, C;> = 3y,
i+k

> lagl®

i=i

1/p

| by | < Krit=l for all 7,

where K and r are as in (a).

COROLLARY 4.5. Let P satisfy the hypotheses of Theorem 4.4. Assume A
is such that max{x;,, — x}/min{x,., — x;} << 6. Then, when viewed as an
operator on C[0, 11, the norm of P is bounded by (20Ky|(1 —r)) Dy, || P,
where K, r, and y are as in Theorem 4.4.

Proof. Assume 2 <{p < . Then, P =3 1A, ® B;, where h, =
X} and || Pllo < max; || A 1. But || A, [l < max; || ¢; [l 251 ay |-
Holder’s inequality shows that | ¢, [l << (xjur — 2)Y2 | s lly < (Xy00 — X7
Thus,

i+k

Z_ lag1®

1/q
1Pl < omax | ay| < 20K r max
j i !

Now, apply Lemma 4.3(b).
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It is clear that a projection, P = > A, ® B, ,, which is bounded on L,
also bounded on L ; it is also clear that the L, norm of P, in general,

depends on more than just the L,-norm of P. The above result yields that,
with the hypotheses of Theorem 4.4 and with a global mesh ratio restriction,
the L, norm of P is of the same magnitude as the L, sorm. In some cases
the mesh restriction might not be necessary. Finally, let us note that with

p

= 2 and ¢; = B, ,, we can recover the result of [8], that the least-squares

projection can be bounded in terms of a global mesh ratio.
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